Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1061, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316776

RESUMO

Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.


Assuntos
Bilirrubina , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
2.
Nat Struct Mol Biol ; 31(2): 293-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177666

RESUMO

Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by ∼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.


Assuntos
Proteínas de Bactérias , Compostos Nitrosos , Tiazolidinas , Tiocianatos , Transativadores , Transativadores/genética , Ativação Transcricional , Microscopia Crioeletrônica , Sequência de Bases , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica
3.
Chemistry ; 29(48): e202301121, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37300353

RESUMO

Lithium-sulfur (Li-S) batteries are a promising energy storage technology due to their tempting high theoretical capacity and energy density. Nevertheless, the wastage of active materials that originates from the shuttling effect of polysulfides still hinders advancement of Li-S batteries. The effective design of cathode materials is extremely pivotal to solve this thorny problem. Herein, surface engineering in covalent organic polymers (COPs) has been performed to investigate the influence of pore wall polarity on the performance of COP-based cathodes used for Li-S batteries. With the assistance of experimental investigation and theoretical calculations, performance improvement by increasing pore surface polarity and a synergy effect of the polarized functionalities, along with nano-confinement effect of the COPs, are disclosed, to which the improved performance of Li-S batteries including outstanding Coulombic efficiency (99.0 %) and extremely low capacity decay (0.08 % over 425 cycles at 1.0 C) is attributed. This work not only enlightens the designable synthesis and applications of covalent polymers as polar sulfur hosts with high utilization of active materials, but also provides a feasible guide for the design of effective cathode materials for future advanced Li-S batteries.

4.
ACS Appl Mater Interfaces ; 15(22): 27046-27055, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226406

RESUMO

Plant essential oils have good antimicrobial properties, but their poor stability and compatibility in aqueous solutions greatly limit their practical application. To address this issue, a dynamically crosslinked nanoemulsion based on host-guest assembly was developed in this study. First, a ß-cyclodextrin-functionalized quaternary ammonium surfactant (ß-CD-QA) and adamantane-terminated polyethylene glycol (APA) crosslinker were first synthesized. Then, the oil-in-water host-guest crosslinked nanoemulsions (HGCTNs) were formed by incorporating tea tree essential oils (TTO) as a natural antimicrobial agent. The results showed that HGCTNs significantly improved the stability of the essential oil nanoemulsions and extended their shelf life. Furthermore, HGCTNs demonstrated effective antimicrobial properties against both Gram-negative/positive bacterioplankton and bacterial biofilms. The results of antibacterial experiments showed that the dynamically crosslinked HGCTNs exhibit superior antibacterial efficacy, with a minimum inhibitory concentration (MIC) of 12.5 v/v % (0.13 µL/mL TTO) and could eradicate the biofilms. The electrical conductivity of the bacterial solution gradually increased within 5 h of treatment with the nanoemulsions, indicating that the HGCTNs have a slow-release effect of TTO and sustainable antibacterial ability. The antimicrobial mechanism can be attributed to the synergistic antibacterial action of the ß-CD-QA surfactant containing a quaternary ammonium moiety and TTO, which are stabilized by nanoemulsions.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Tensoativos/farmacologia , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana
5.
ACS Appl Mater Interfaces ; 15(15): 19447-19458, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37037788

RESUMO

Liquid-free ionic conductive elastomers (ICEs) are ideal materials for wearable strain sensors in increasingly flexible electronic devices. However, developing recyclable ICEs with high elasticity, self-healability, and recyclability is still a great challenge. In this study, we fabricated a series of novel ICEs by in situ polymerization of lipoic acid (LA) in poly(acrylic acid) (PAA) solution and cross-linking by coordination bonding and hydrogen bonding. One of the obtained dynamically cross-linked interlocking double-network ICEs, PLA-PAA4-1% ICE, showed excellent mechanical properties, with high elasticity (90%) and stretchability (610%), as well as rapid self-healability (mechanical self-healing within 2 h and electrical recovery within 0.3 s). The PLA-PAA4-1% ICE was used as a strain sensor and possessed excellent linear sensitivity and highly cyclic stability, effectively monitoring diverse human motions with both stretched and compressed deformations. Notably, the PLA-PAA4-1% ICE can be fully recycled and reused as a new strain sensor without any structure change or degradation in performance. This work provided a viable path to fabricate conductive materials by solving the two contradictions of high mechanical property and self-healability, and structure stability and recyclability. We believe that the superior overall performance and feasible fabrication make the developed PLA-PAA4-1% ICE hold great promise as a multifunctional strain sensor for practical applications in flexible wearable electronic devices and humanoid robotics.

6.
Mol Immunol ; 154: 96-107, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621062

RESUMO

BACKGROUND: Lactate accumulation caused by abnormal tumor metabolism can induce the formation of an inhibitory immune microenvironment through a variety of pathways, which is characterized by regulatory T cells (Treg) infiltration and effector T cells (Teff) depletion. Studies have found that the key reason why Treg cells can survive in harsh environments lies in their flexible metabolic mode, which can use lactate in tumor microenvironment (TME) as an alternative energy substance to maintain their inhibitory activity. In addition, lactate could also promote the differentiation of CD4+T cells into Treg, but the mechanism was not completely clear. The purpose of this study was to investigate the possible mechanism by which lactate is utilized by CD4+T cells to influence Th17/Treg ratio. METHODS: Basal cytokines (anti-CD3, anti-CD28, TGF-ß) and 10 mM lactate was added into Naïve CD4+T cells basal medium for 3 days. After TCR stimulation, Naïve CD4+T converted to CD4+T. Flow cytometry was used to detect the proportion of Treg cells; ELISA was used to detect the activity of LDHA, LDHB and NADH and the amount of α -Ketoglutaric Acid (α-KG) and 2-Hydroxyglutaric Acid (2HG) after lactate entered the cells; Western Blot and RT-PCR were used to detect the protein and gene expression of Foxp3, RORγt, LDHA and LDHB. In the validation experiment, lactate uptake inhibitor AZD3965, LDHA inhibitor GSK2837808A and NADH conversion inhibitor Rotenone were added respectively to observe the differentiation ratio of Treg cells and confirm the key points of metabolism; the degradation of Treg cell transcription factor Foxp3 was interfered with ubiquitination inhibitors to observe whether it co-ubiquitinated with HIF-1α; the expression and activity of LDHA, LDHB and NADH in mitochondria and cytoplasm were detected to confirm cell localization. RESULTS: When basal cytokines (anti-CD3, anti-CD28, TGF-ß) stimulated, lactate was added to the culture medium, and CD4+T cells absorbed a large amount of lactate not only through MCT1 (monocarboxylic acid transporter), but also increased the expression of lactate dehydrogenase and accelerated the intracellular metabolism of lactate. LDHB in cytoplasm mainly catalyzed the dehydrogenation of lactate to pyruvate, accompanied by the transformation reaction between NAD+ and NADH. The latter further entered the mitochondria and participates in the tricarboxylic acid cycle metabolism. In addition, lactate could significantly increase the level of LDHA in mitochondria and promote the transformation of α-KG to 2HG, accompanied by the transformation of NADH to NAD+. These metabolic changes eventually led to an increase in the intracellular 2HG/α-KG ratio. Abnormal 2HG increased the proportion of Treg by inhibiting ATP5B-mediated phosphorylation of mTOR and the synthesis of HIF-1α, causing it not be enough to ubiquitinate and degrade with Foxp3. CONCLUSIONS: Lactate plays an important role in regulating the differentiation of Treg cells, inducing the expression and function of LDHA and promoting the transformation of α-KG to 2HG may be an important mechanism.


Assuntos
Ácido Láctico , NAD , NAD/metabolismo , NAD/farmacologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Linfócitos T Reguladores , Diferenciação Celular , Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição Forkhead/metabolismo
7.
Burns ; 49(3): 678-687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35623933

RESUMO

BACKGROUND: Research on coagulation dysfunction following burns is controversial. This study aimed to describe the coagulation changes in severe burn patients by examining coagulation parameters. METHODS: Patients with third-degree total body surface area (TBSA) burns of ≥30% were enrolled between 2017 and 2020. Platelet (PLT) count and coagulation indexes (including APTT, INR, FIB, DD, and AT Ⅲ) were measured at admission and once weekly for 8 weeks, and statistical analysis was performed. The patient medical profiles were reviewed to extract demographic and clinical data, including TBSA, third-degree TBSA, and inhalation injury. The total intravenous fluids and transfusions of crystalloids, fresh frozen plasma (FFP), and red blood cells (RBC) were calculated during the forty-eight-hour period. The number of sepsis cases was recorded. RESULTS: We enrolled 104 patients , and while the overall coagulation trend fluctuated, inflection points appeared around one week and demonstrated hypercoagulability. INR was significantly higher in the non-survival group than in the survivors' group from admission to three weeks after burn (all p<0.01). From post-injury week 1 to post-injury week 3, the APTT in the non-survival group was greater than in the survival group, but the non-survival group's PLT count was lower than that in the survival group (all p<0.05). At two and three weeks after burns, the FIB levels in the non-survival group were significantly lower than those of the survival group (both p<0.01). The prevalence of inhalation injury and the proportion of sepsis cases were significantly higher in the non-survival group than in the survival group ( p < 0.05, p < 0.001, respectively). At the time of death, APTT, INR, and FDP levels were significantly higher in the non-survival group in the survivor group, and FIB, ATIII, and PLT were significantly lower than in the survivor group (all p<0.01). On the day of death, nine of the 12 dead patients had disseminated intravascular coagulation (DIC). CONCLUSIONS: Coagulation dysfunction was most prominent in severe burn patients 1 week after injury and presented as hypercoagulability. Large-area burn injury, large amounts of fluid resuscitation, inhalation injury, and sepsis may all contribute to coagulation dysfunction, which can further develop into DIC and even death in severe burns patients.


Assuntos
Transtornos da Coagulação Sanguínea , Queimaduras , Sepse , Trombofilia , Humanos , Estudos Retrospectivos , Causas de Morte , Transtornos da Coagulação Sanguínea/epidemiologia , Transtornos da Coagulação Sanguínea/etiologia , Sepse/epidemiologia , Sepse/etiologia
8.
J Control Release ; 353: 738-751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526019

RESUMO

In the absence of adequate treatment, effective bone regeneration remains a great challenge. Exploring hydrogels with properties of excellent bioactivity, stability, non-immunogenicity, and commercialization is an important step to develop hydrogel-based bone regeneration materials. In this study, we engineered a self-assembled chelating peptide hydrogel loaded with an osteogenic metal ion cluster extracted from the processed pyritum decoction, including Fe2+, Cu2+, Zn2+, Mn2+, Mg2+, and Ca2+ ions, named processed pyritum hydrogel (PPH). We demonstrated that as a reservoir of beneficial metal ion clusters in bone regeneration, PPH has been shown to regulate a variety of genes in the process of bone regeneration. These genes are mainly involved in extracellular matrix synthesis, cell adhesion and migration, cytokine expression, antimicrobial and inflammation. Therefore, PPH accelerated the progress of various bone healing stages, and shortened the bone healing cycle by 4 weeks. Our investigation outcomes showed that the engineered metal ion cluster hydrogel is a novel, simple, and commercializable bone-regenerating hydrogel with potential clinical use.


Assuntos
Regeneração Óssea , Hidrogéis , Hidrogéis/química , Osteogênese , Peptídeos , Osso e Ossos
9.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4462-4468, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046876

RESUMO

An ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method was established for the determination of active components of Sarcandrae Herba, and applied to the pharmacokinetics study of multiple dosage forms. After SD rats were administered by gavage with three dosage forms [Sarcandrae Herba extract, commercial Sarcandrae Herba Guttate Pills, and polydopamine guttate pills loaded with active components of Sarcandrae Herba(PDA-Sg Guttate Pills)], blood samples were collected from the inner canthus at different time points. After protein precipitation, plasma samples were separated on ACQUITY UPLC C_(18) column(2.1 mm×100 mm, 1.7 µm). The mobile phase consisted of water containing 0.2% formic acid and acetonitrile in gradient elution. The negative ions were measured simultaneously in the multi-reaction monitoring(MRM) mode. The pharmacokinetic parameters were calculated and fitted by DAS 2.0. All four components could be detected in the plasma of rats in each group at each time point except the neochlorogenic acid and cryptochlorogenic acid in the Sarcandrae Herba extract group. The guttate pills group showed a significant increase in drug content at each time point. The exposure of the main components of Sarcandrae Herba in blood was effectively increased by PDA-drug loading effect in PDA-Sg Guttate Pills(The AUC_(0-24 h) of neochlorogenic acid, cryptochlorogenic acid, isaziridin and rosmarinic acid reached 2.45, 32.90, 1.54, 4.81 times that of the commercial guttate pills). This study proves the measurability of the above-mentioned multi-component in vitro-in vivo delivery process. The pharmacokinetic study has shown that PDA-Sg Guttate Pills can effectively delay the elimination time and improve the bioavailability of the four components, which can provide theoretical data for the production of the drug.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Indóis , Polímeros , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
10.
Proteins ; 90(10): 1749-1765, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35924777

RESUMO

ATP-binding cassette (ABC) superfamily is one of the largest groups of primary active transporters that could be found in all kingdoms of life from bacteria to humans. In humans, ABC transporters can selectively transport a wide spectrum of substrates across membranes, thus playing a pivotal role in multiple physiological processes. In addition, due to the ability of exporting clinic therapeutics, some ABC transporters were originally termed multidrug resistance proteins. Increasing investigations of human ABC transporters in recent years have provided abundant information for elucidating their structural features, based on the structures at distinct states in a transport cycle. This review focuses on the recent progress in human ABC structural analyses, substrate binding specificities, and translocation mechanisms. We dedicate to summarize the common features of human ABC transporters in different subfamilies, and to discuss the possibility to apply the fast-developing techniques, such as cryogenic electron microscopy, and artificial intelligence-assisted structure prediction, for future studies.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Plásticos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina , Inteligência Artificial , Humanos , Plásticos/metabolismo
11.
Nat Commun ; 13(1): 3299, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676282

RESUMO

Human ABC transporter ABCD1 transports very long-chain fatty acids from cytosol to peroxisome for ß-oxidation, dysfunction of which usually causes the X-linked adrenoleukodystrophy (X-ALD). Here, we report three cryogenic electron microscopy structures of ABCD1: the apo-form, substrate- and ATP-bound forms. Distinct from what was seen in the previously reported ABC transporters, the two symmetric molecules of behenoyl coenzyme A (C22:0-CoA) cooperatively bind to the transmembrane domains (TMDs). For each C22:0-CoA, the hydrophilic 3'-phospho-ADP moiety of CoA portion inserts into one TMD, with the succeeding pantothenate and cysteamine moiety crossing the inter-domain cavity, whereas the hydrophobic fatty acyl chain extends to the opposite TMD. Structural analysis combined with biochemical assays illustrates snapshots of ABCD1-mediated substrate transport cycle. It advances our understanding on the selective oxidation of fatty acids and molecular pathology of X-ALD.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Coenzima A/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Peroxissomos/metabolismo
12.
Transl Lung Cancer Res ; 11(3): 366-380, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35399564

RESUMO

Background: Circular ribonucleic acids (circRNAs) play a key role in the development of different types of cancer. Ferroptosis is a type of programmed cell death that contributes to cancer progression. However, the role of circRNAs in lung adenocarcinoma (LUAD) ferroptosis remains unclear. Methods: The gene expression levels of circRNA P4HB (circP4HB), microRNA-1184 (miR-1184) and Solute carrier family 7 member 11 (Slc7a11), also known as Xct were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Ferroptosis of established LUAD cells was induced by erastin. Cell viability was examined via Cell Counting Kit 8 assays. Ferroptosis was evaluated by malondialdehyde (MDA), Prostaglandin-endoperoxide Synthase 2 (Ptgs2), lipid reactive oxygen species (lipid ROS), and JC-1 detection. The mechanism of circP4HB/miR-1184/SLC7A11 was investigated by luciferase reporter assays, RNA immunoprecipitation, RNA pull-down, and western blot assays. A functional for circP4HB in vivo was determined using xenograft nude mice models. Results: CircP4HB expression levels were increased in LUAD. It triggered glutathione (GSH) synthesis and, therefore protected LUAD cells from ferroptosis induced by erastin. CircP4HB may function as a competing endogenous RNA by modulating miR-1184 to regulate SLC7A11. CircP4HB inhibited ferroptosis by regulating miR-1184/ SLC7A11-mediated GSH synthesis. In vivo, overexpression of circP4HB promoted tumor growth and inhibited ferroptosis. Conclusions: The circRNA, circP4HB acts as a novel ferroptosis suppressor in LUAD. Furthermore, circP4HB protects LUAD from ferroptosis via modulation of the miR-1184/SLC7A11 axis. Our findings identified circP4HB as a novel biomarker in LUAD and warrants further investigation in the early diagnosis and treatment of LUAD.

13.
Proc Natl Acad Sci U S A ; 119(14): e2118656119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349344

RESUMO

SignificanceATP8B1 is a P4 ATPase that maintains membrane asymmetry by transporting phospholipids across the cell membrane. Disturbance of lipid asymmetry will lead to the imbalance of the cell membrane and eventually, cell death. Thus, defects in ATP8B1 are usually associated with severe human diseases, such as intrahepatic cholestasis. The present structures of ATP8B1 complexed with its auxiliary noncatalytic partners CDC50A and CDC50B reveal an autoinhibited state of ATP8B1 that could be released upon substrate binding. Moreover, release of this autoinhibition could be facilitated by the bile acids, which are key factors that alter the membrane asymmetry of hepatocytes. This enabled us to figure out a feedback loop of bile acids and lipids across the cell membrane.


Assuntos
Adenosina Trifosfatases , Colestase Intra-Hepática , Adenosina Trifosfatases/metabolismo , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Colestase Intra-Hepática/metabolismo , Humanos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
14.
Acta Biomater ; 143: 203-215, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245682

RESUMO

Severe skin injuries are hard to repair and susceptible to bacterial infection. Development of a versatile antimicrobial anti-inflammatory hydrogel dressing that eliminates concern over antibiotic resistance is urgently needed but remains an elusive goal. Our research, described herein, the design and fabrication of a new family of supramolecular hydrogels based on hydroxypropyl chitosan (HPCS) and poly(N-isopropylacrylamide) (PNIPAM) may prove to be that goal. Employing the reversible cross-linking by ß-cyclodextrin (ß-CD) and adamantyl (AD) pre-assembly, the hydrogels can be formed in a facile one-pot method. Additionally, the structure and performance of the hydrogels can be controlled by a simple adjustment of the AD content. The obtained hydrogels exhibit an abundance of desired properties; they are injectable, thermosensitive, highly ductile, self-healable (will self-heal recurring damage to the hydrogel bandage of up to several millimeters wide), biocompatible, and have antimicrobial activity against Staphylococcus aureus when infused with dipotassium glycyrrhizinate (DG). Using a mouse full-thickness skin defect model, in vivo wound healing evaluations revealed that the DG-loaded hydrogels (HP-3/DG10) applied to the wound resulted in rapid wound closure. The hydrogels promoted efficient tissue remolding, collagen deposition, decreased inflammation and performed better than the control groups of commercial TegadermTM film and 3M dressing. Given their multifunctionality and in vivo efficacy, the DG-loaded HP hydrogels hold great potential as a wound dressing for full-thickness skin repair. STATEMENT OF SIGNIFICANCE: Injectable hydrogels are receiving increasing attention as an ideal wound dressing. To the best of our knowledge, however, injectable and wide-crack self-healing hydrogel dressings have been hardly studied. A versatile antimicrobial hydrogel without drug resistance or cytotoxicity is also highly required. Therefore, in the present study, we constructed injectable thermosensitive and wide-crack self-healing hydrogels with antibacterial and anti-inflammatory properties. These hydrogels were developed through novel strategies of the wide-crack self-healing design and the loading of the bioactive antibacterial and anti-inflammatory agent dipotassium glycyrrhizinate. The simple preparation method and multifunctionality of the studied hydrogel composites may provide important insights for the development of future biomaterials for wound dressings and other biomedical applications.


Assuntos
Hidrogéis , Cicatrização , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Glicirrízico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia
15.
Clin Neurol Neurosurg ; 214: 107148, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158167

RESUMO

BACKGROUND AND PURPOSE: Abnormal expression of phosphatidylethanolamine-binding protein 4 (PEBP4) has been identified in various types of malignant tumors. In the present study, we investigated the expression of PEBP4 in meningioma cases and examined whether PEBP4 expression was correlated with outcomes among these patients. MATERIALS AND METHODS: The expression levels of PEBP4 and Ki-67 in human meningioma tissues from 65 patients were evaluated by immunohistochemical staining. The correlation between PEBP4 immunoreactivity in meningioma samples and patients' clinical outcomes was examined using the Kruskal-Wallis correlation test. The prognostic value of PEBP4 expression in meningiomas patients also was investigated. RESULTS: Immunohistochemical analysis revealed up-regulated PEBP4 expression in both atypical and anaplastic meningiomas compared with classical meningiomas (13.38 ± 4.19% vs. 3.64 ± 2.04%, P < 0.001). PEBP4 immunoreactivity in meningioma samples was closely correlated with that for Ki-67 (Spearman r = 0.7922, P < 0.0001). PEBP4 expression was also associated with tumor differentiation grade and clinical recurrence (P < 0.05). Multivariate regression analysis showed with high PEBP4 expression was associated with a longer recurrence-free survival (hazard ratio=0.252, 95% confidence interval: 0.067-0.940, P = 0.040). CONCLUSION: PEBP4 may play an important role in the progression of meningioma, as high PEBP4 expression was associated with a higher pathological grade of meningioma. Moreover, PEBP4 expression may be a meaningful prognostic biomarker in meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico
16.
Cell Rep ; 38(4): 110298, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081353

RESUMO

The reverse cholesterol transport pathway is responsible for the maintenance of human cholesterol homeostasis, an imbalance of which usually leads to atherosclerosis. As a key component of this pathway, the ATP-binding cassette transporter ABCG1 forwards cellular cholesterol to the extracellular acceptor nascent high-density lipoprotein (HDL). Here, we report a 3.26-Å cryo-electron microscopy structure of cholesterol-bound ABCG1 in an inward-facing conformation, which represents a turnover condition upon ATP binding. Structural analyses combined with functional assays reveals that a cluster of conserved hydrophobic residues, in addition to two sphingomyelins, constitute a well-defined cholesterol-binding cavity. The exit of this cavity is closed by three pairs of conserved Phe residues, which constitute a hydrophobic path for the release of cholesterol in an acceptor concentration-dependent manner. Overall, we propose an ABCG1-driven cholesterol transport cycle initiated by sphingomyelin-assisted cholesterol recruitment and accomplished by the release of cholesterol to HDL.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Colesterol/metabolismo , Microscopia Crioeletrônica , Humanos , Esfingomielinas/metabolismo
17.
Kaohsiung J Med Sci ; 38(5): 479-485, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35049137

RESUMO

To exploit whether early continuous blood purification (CBP) inhibits the Toll-like receptors 4 (TLR4) signaling pathway in the peripheral blood of patients with severe acute pancreatitis (SAP) and whether it affects the abundance of inflammatory factors; 130 SAP patients were randomly selected and divided into Groups B and C. Both groups received conventional treatment. Among them, Group C was given early CBP treatment. Another 60 healthy cases in physical examination at the same time were selected as Group A. The abundances of TLR4 and inflammatory factors were detected before and after treatment. Compared with Group B, (1) the symptoms in Group C improved more markedly; (2) protein contents of TLR4 and nuclear factor kappa B (NF-κB) in Group C diminished more signally; (3) the abundances of tumor necrosis factor alpha (TNF-α), cytokine interleukin-1ß (IL-1ß), and cytokine interleukin 6 (IL-6) in Group C decreased (p < 0.05); and (4) the abundance of TLR4 in Group C was positively correlated with those of TNF-α, IL-1ß, and IL-6 after treatment (all p < 0.001). Early CBP inhibits TLR4 signaling pathway in SAP patients and attenuates the abundance of inflammatory factors to a certain extent, which may provide a new clinical treatment strategy for SAP.


Assuntos
Pancreatite , Fator de Necrose Tumoral alfa , Doença Aguda , Citocinas/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Pancreatite/tratamento farmacológico , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética
18.
Ann Transl Med ; 10(23): 1282, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36618793

RESUMO

Background: The lymph node dissection for esophageal cancer is controversial. Some prediction models of lymph node metastasis (LNM) use the short diameter of lymph nodes measured by computed tomography (CT) examination as a predictor, but the size of that for judging metastasis is still controversial. However, radiomics can extract some features in tumors that cannot be obtained by naked eyes, which may have a higher value in predicting LNM. In this study, a nomogram was developed based on radiomics and clinical factors to predict left recurrent laryngeal nerve lymph node (RLNN) metastasis in patients with esophageal squamous cell carcinoma (ESCC). Methods: There were 350 patients included in this retrospective study. And the postoperative pathological results determined whether there was left RLNN metastasis. A univariate analysis was conducted of the clinical data. The least absolute shrinkage and selection operator regression analysis was conducted to filter the radiomics features extracted from CT images. The multivariate logistic regression equation was used to construct a nomogram. The area under the curve (AUC) was used to evaluate the predictive ability. Due to the small sample size, we chose to perform internal validation after the model was established by 10-fold cross-validation, Harrell's concordance index (C-index), bootstrap validation and calibration. Results: Ultimately, 3 indicators were screened out; that is, tumor location, surface volume ratio, and run-length non-uniformity. We then constructed the nomogram using these 3 indicators. The model had good accuracy and calibration performance. It has an AUC of 0.903 (95% confidence interval: 0.861-0.945), a sensitivity of 0.873, and a specificity of 0.756. Ten-fold cross-validation showed that the sensitivity and specificity of the training set were 88.08% and 75.81%, and the validation set had a sensitivity of 85.08% and a specificity of 75.49%. The Brier score was 0.074, and C-index was 0.904, which indicated good consistency between the actual and predicted results. Conclusions: A nomogram constructed based on radiomics features and clinical factors can be used to predict the metastasis of left RLNN in patients with ESCC in a non-invasive way, which provided a reference for clinicians to formulate individualized lymph node dissection plans.

19.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1554-1563, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866611

RESUMO

As one of the most abundant bacteria in the human oral cavity, Fusobacterium nucleatum is closely involved in various oral diseases and is also a risk factor for other diseases. The peptidases of F. nucleatum can digest exogenous peptides into amino acids to satisfy its nutrient requirements. Here, a putative F. nucleatum peptidase, termed S9Cfn, which belongs to the S9C peptidase family was identified. Enzymatic activity assays combined with mass-spectrometric analysis revealed that S9Cfn is a carboxypeptidase, but not an aminopeptidase as previously annotated. The crystal structure of the S9Cfn tetramer was solved at 2.6 Šresolution and was found to contain a pair of oligomeric pores in the center. Structural analysis, together with site-directed mutagenesis and enzymatic activity assays, revealed a substrate-entrance tunnel that extends from each oligomeric pore to the catalytic triad, adjacent to which three conserved arginine residues are responsible for substrate binding. Moreover, comparison with other S9 peptidase structures indicated drastic conformational changes of the oligomeric pores during the catalytic cycle. Together, these findings increase the knowledge of this unique type of tetrameric carboxypeptidase and provide insight into the homeostatic control of microbiota in the human oral cavity.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxipeptidases/metabolismo , Fusobacterium nucleatum/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Carboxipeptidases/química , Carboxipeptidases/genética , Domínio Catalítico , Cristalografia por Raios X , Humanos , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Conformação Proteica
20.
J Virol ; 95(24): e0135621, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34549983

RESUMO

A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.


Assuntos
Anabaena/virologia , Bacteriófagos/química , Capsídeo/química , Microscopia Crioeletrônica/métodos , Bacteriófagos/classificação , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Água Doce/microbiologia , Modelos Moleculares , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...